A Convex Metric with Unique Segments

نویسندگان

  • H. M. Elliott
  • R. H. BING
چکیده

1. H. M. Elliott, On approximation to functions satisfying a generalized continuity condition, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 1-23. 2. W. E. Sewell, Continuity and degree of approximation by rational functions, Revista de Ciencias vol. 41 (1939) pp. 435-451. 3. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium Publications, vol. 20, New York, 1935. 4. J. L. Walsh and W. E. Sewell, Sufficient conditions for various degrees of approximation by polynomials, Duke Math. J. vol. 6 (1940) pp. 658-705.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

On Metric Spaces in Which Metric Segments Have Unique Prolongations

An M-space is a metric space (X, d) having the property that for each pair of points p, q ∈ X with d(p, q) = λ and for each real number α ∈ [0, λ], there is a unique rα ∈ X such that d(p, rα) = α and d(rα, q) = λ − α. In an M-space (X, d), we say that metric segments have unique prolongations if points p, q, r, s satisfy d(p, q) + d(q, r) = d(p, r), d(p, q) + d(q, s) = d(p, s) and d(q, r) = d(q...

متن کامل

Orthogonal metric space and convex contractions

‎In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath  might be called their  definitive versions. Also, we show that there are examples which show that our main theorems are  genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour,  {it Approximate fixed points of generalized convex contractions}, Fixed Poi...

متن کامل

On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

متن کامل

Extensions of Saeidi's Propositions for Finding a Unique Solution of a Variational Inequality for $(u,v)$-cocoercive Mappings in Banach Spaces

Let $C$ be a nonempty closed convex subset of a real Banach space $E$, let $B: C rightarrow E $ be a nonlinear map, and let  $u, v$ be  positive numbers. In this paper, we show  that  the generalized variational inequality $V I (C, B)$ is singleton for $(u, v)$-cocoercive mappings under appropriate assumptions on Banach spaces. The main results are extensions of the Saeidi's Propositions for fi...

متن کامل

Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces

We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010